
Tigrinya Root Consonants and the OCP

Outline

- 1. Roots and Templates in Semitic Languages
- 2. The OCP
- 3. Tigrinya Root-Consonant Cooccurrences
- 4. The Similarity Model
- 5. The Role of Root Length

Review: Semitic Templatic Morphology

- Syllabic patterns or templates
- Example: the root /sbr/ = 'break (tr.)'
 - The template in (1a) is
 CΛCΛC

- (1) a. sabar-ku
 - b. yɨ-ssabar
 - c. ti-sabbir
 - d. nɨ-sʌbr-o
 - e. sibar
 - f. yɨ-sbʌr

- 'I broke (it)'
- 'may it be broken'
- 'she breaks (it)'
- 'we break it'
- 'break (it)! (m.sg.)'
- 'may he break (it)'

Review: Semitic Templatic Morphology

- Verb roots can be used as noun roots in a different template
- The consonantal root is the independent morpheme

- (3) a. dʌnnʌk- 'be astonished'
 b. dɨnki 'wonder, surprise'
- (4) a. darra?- 'patch up, reinforce with patches' b. dir?-ito 'patchwork quilt'
- (5) a. ⁹iggus 'patient' b. ti-⁹gis-ti 'patience'

Review: Semitic Templatic Morphology

- (9) a. baddal
 - b. rassi⁹-
 - c. waddas-

'hurt'

'forget'

'praise'

- Biliterals, triliterals, quadriliteral, quinquiliterals
 - Triliterals are the most common, with only one true quinquiliteral
- One-to-Many Correspondence
 - Type A verbs → triliteral root with a three consonant template
 - Type B verbs → triliteral root with a four consonat template

- (10) a. darsas
 - b. saħbʌb-
 - c. lamtat-

- 'heal'
- 'become exhausted'
- 'beat soundly'

Review: Semitic Templatic Morphology

- Gemination
- Spreading
- Importantly, both have three root consonants
- *Note: biliteral roots almost always have a three slot template

- (12) a. sʌdʌd- 'send'
 b. kʌbʌb- 'surround'
 c. mʌzʌz- 'draw sword'
 d. nazʌz- 'forgive'

(17) a.
$$C \wedge C \wedge C$$
 = sAdAd s d

b.
$$C \wedge C \wedge C = *s \wedge s \wedge d$$

- Expresses a prohibition on adjacent identical elements
- Reduplication of the second consonant
- The OCP necessitates a stem like /sʌdʌd-/ to have the root /sd/
- Roots cannot have two identical consonants in a row
 - */ssd/ & */sdd/

The Obligatory
Contour
Principle (OCP)

The OCP

Consonants fill the template left to right

(19) Left-to-right association

- "Total OCP" (Pierrehumbert 1993) refers to adjacent consonants that are identical in all their features
 - Absolute prohibition

The OCP

- "Place OCP" refers to nonidentical consonants of the same place of articulation
 - •Strongly disfavored <u>anywhere</u> in the same root

- •*/kbb/ = Total OCP
- •Disfavoring of /kbm/, /bkb/ (identical but nonadjacent) = place OCP
 - •*Note: nonidentical refers to homorganic consonants

Tigrinya Root-Consonant Cooccurrences

•	Bucley concludes that the
	template would not affect the
	cooccurrence pattern in the root,
	so we will ignore it.

- Corpus contains 2744 roots (Bassano 1918)
 - */nb/ occasionally appears as [mb], but Buckley coded them as /n/
 - *Other irregularities exist, but it is unlikely the numbers are significant

(27)	n	root type	templatic realizations
	477	Biliterals	three-slot $C_1C_2C_2$ four-slot $C_1C_2C_2C_2$ or $C_1C_2C_1C_2$
	1804	Triliterals	three-slot $C_1C_2C_3$ four-slot $C_1C_2C_2C_3$ or $C_1C_2C_3C_3$ five-slot $C_1C_2C_3C_2C_3$
	463	Quadriliterals	four-slot $C_1C_2C_3C_4$ five-slot $C_1C_2C_3C_4C_4$

- Comparing expected cooccurrences with observed cooccurrences
- Step 1: Determine positions of cooccurrence based off of the corpus
- 10 possibilities

(38)	biliteral	quadrili	quadriliteral	
	I-II ab	I-II	ab••	
		II-III	·ab·	
	triliteral	III-IV	· · ab	
	I-II ab•	I-III	a·b·	
	II-III •ab	II-IV	•a•b	
	I-III a∙b	I-IV	a••b	

Cooccurrences in adjacency positions vs. Separated positions

(39) *adjacent consonants:*

biliteral I-II

triliteral I-II, II-III

quadriliteral I-II, II-III, III-IV

separated by one other consonant:

triliteral I-III

quadriliteral I-III, II-IV

separated by two other consonants:

quadriliteral I-IV

*Note: /ab • / does not equal / • ab/. However, in this study we assume they are equal

 Step 2: Calculate the expected values for each consonant cooccurrence

- (40) A = attested occurrences of consonant **a** in position **x**B = attested occurrences of consonant **b** in position **y**
 - N = total number of roots instantiating these two positions
- (41) $A/N = \text{maximum likelihood estimate of the probability that } \mathbf{a} \text{ will occur in position } \mathbf{x}$
 - B/N = maximum likelihood estimate of the probability that**b**will occur in position**y**
 - $(A/N) \cdot (B/N)$
 - = probability that a will occur in position x and b will occur in position y
 - $E = (A/N) \cdot (B/N) \cdot N = (A \cdot B)/N$
 - = expected number of roots with **a** in **x** and **b** in **y** from a corpus of N roots

- Step 3: compare the observed and expected values
- Observed number of cooccurrences (O) was divided by the expected number of cooccurrences (E).
- A value of 1, would indicate there is nothing inhibiting cooccurrence (i.e., the OCP has no effect)
- A value of 0 indicates that O = 0 (i.e., the OCP has absolute effect)
- Thus, we can prove a degree relationship in similarity and adjacency

Results

- Pierrehumbert's study was only on triliterals, whereas Buckley did bi-, tri-, and quadriliterals.
- Statistical analySis confirms Pierrehumbert's results: the closer and more similar the consonants, the less likely they will be found to cooccur in a root

Results: Adjacency

- Identical adjacent consonants are absent
- However, same-place (homorganic) adjacent consonants do occur
 (43) Cooccurrences of adjacent homorganic consonants

	<u>O</u>	E	O/E
guttural	0	78	0.00
velar	1	125	0.01
coronal obstruent	65	242	0.27
coronal sonorant	27	261	0.10
labial	2	132	0.02

(44) Some roots with nonadjacent homorganic consonants

ťmt	'stare at'
fsm	'become pale or discolored'
drt	'delimit a field'
bg ^w m	'be sly, taciturn'
ħs?	'be dry (esp. of hair)'
zmd	'become related by marriage'
ťys	'repopulate a region with former residents'
mlbs	'be weak and incapable of work'
wslt	'lie, cheat; miss a target'

(45) Cooccurrences of nonadjacent homorganic consonants (separated by one consonant)

	<u>O</u>	_ <u>E</u>	<u>O/E</u>
guttural	6	49	0.12
velar	10	73	0.14
coronal obstruent	112	162	0.69
coronal sonorant	106	140	0.76
labial	18	68	0.26

Results: Adjacency

 Homorganic consonants are more common when nonadjacent

Results: Adjacency

- Remember, the lower the value of O/E, the stronger the inhibiting effect
 - (46) *O/E values for homorganic consonants by adjacency*

	<u>adjacent</u>	<u>nonadjacent</u>
guttural	0.00	0.12
velar	0.01	0.14
coronal obstruent	0.27	0.69
coronal sonorant	0.10	0.76
labial	0.02	0.26

 Two things to note: the effect is weaker when nonadjacent & the OCP effect is weaker for coronals

Results: Identity

 Nonadjacent identical consonants do occur

(48) Nonadjacent cooccurrences of identical consonants (separated by one consonant)

	<u>O</u>	<u>E</u>	O/E
guttural	0	16	0.00
velar	1	14	0.07
coronal obstruent	7	30	0.23
coronal sonorant	2	43	0.05
labial	2	22	0.09

(47) Some roots with nonadjacent identical consonants

sls 'plow a field the third time'

l'l 'raise, lift off the ground'

trt 'tell stories, old traditions'

dndw 'threaten to hit'

mslm 'convert to Islam'

Results: Identity

(49) Nonadjacent cooccurrences of nonidentical consonants (separated by one consonant)

	<u>O</u>	<u>E</u>	O/E
guttural	6	33	0.18
velar	3	59	0.05
coronal obstruent	105	132	0.80
coronal sonorant	104	97	1.07
labial	16	46	0.35

- Some subregularities within the guttural class
 - (50) Cooccurrences of gutturals (regardless of adjacency)

	<u>O</u>	_ <u>E</u>	<u>O/E</u>
laryngeal + pharyngeal	6	49	0.14
two laryngeals	0	8	0.00
two pharyngeals	0	78	0.00

- This is due to <u>relative similarity</u>: the more similar the consonants are, the less they cooccur
- /h, ?, ħ, _/ are gutturals, but /ħ, _/ are pharyngeals so prohibition is absolute

Sonorants and obstruents are separated due to similarity. The [±sonorant]
dichotomy is strong enough to eliminate the OCP effect

(51) Cooccurrences of a coronal sonorant and obstruent

	_ <i>O</i>	<u>_E</u>	<u>O/E</u>
adjacent	744	625	1.10
nonadjacent	339	290	1.17

- In sonorants, we examine /n, l, r/
 - (52) Cooccurrences of coronal sonorants (regardless of adjacency)

	<u>O</u>	<u>E</u>	<u>O/E</u>
one each of /n, 1/	46	81	0.57
one each of /n, r/	85	99	0.86
one each of /r, 1/	0	91	0.00

• Thus, the most salient feature is [±nasal] in the sonorants

- In obstruents, the defining feature is [±continuant]
 - (53) Cooccurrences of coronal obstruents (regardless of adjacency)

	<u>O</u>	_ <u>E</u>	<u>O/E</u>
fricative and stop	178	216	0.82
two fricatives	9	103	0.09
two stops	9	112	0.08

- Cooccurring plain velars are less common than among the labiovelars.
- Tigrinya has cooccurring labiovelars, but Buckley essentially chalks it up to wordborrowing from other languages.

(55) Cooccurrences of velars (regardless of adjacency)

	<u>O</u>	<u>E</u>	<u>O/E</u>
plain velar + labiovelar	2	88	0.02
two plain velars	0	96	0.00
two labiovelars	10	21	0.48

- Fixing the disunity of place and total OCP
- View total OCP as a subset of place OCP.
- If identity and adjacency are cumulative, then a maximal similarity situation (both adjacent and fully identical in their features), is prohibited absolutely.

- OCP is not an absolute principle, but a matter of degree.
- Degree of adjacency (how close they are) & degree of identity (how many features they share)

An analogy for perceived similarity

b. Adjacent, nonidentical (disfavored); cf. bfk

c. Nonadjacent, identical (disfavored); cf. bkb

d. Nonadjacent, nonidentical (mildly disfavored); cf. bkf

- Calculating the degree of similarity
 - (59) a. Same = number of shared features
 - b. Different = number of features which differ
 - c. Similarity (S) = Same/(Same + Different)
- Distinctness
 - (60) Distinctness (D) = 1 S
- Now we can prove similarity. As Similarity increases, D decreases, and as the strength of the OCP effect increases, O/E should decrease

(61) Cooccurrences of coronal obstruents (regardless of adjacency)

	<u>O</u>	<u>E</u>	<u>O/E</u>
voiceless /s, t/	39	70	0.56
voiced /z, d/	8	43	0.19
ejective /ŝ, t/	4	33	0.12

• If the features [voiced] and [constricted glottis] are privative (they exist only in their positive values), then the similarity model is a success.

Because /s, t/ lack [voiced] and [constricted glottis] (and there is no negative feature),
 they simply lack less features and are thus less similar.

The Role of Root Length

 The "distraction" factor: just as an intervening item reduces perceived similarity, flanking items might serve a similar function

(66) Cooccurrences of adjacent coronal sonorants

	<u>O</u>	<u>E</u>	<i>O/E</i>
biliteral	0	15	0.00
e.g. nr (absent)			
triliteral	8	178	0.04
e.g. knr, nrk (very rar	e)		
quadriliteral	19	67	0.28
e.g. bknr, bnrk, nrbk (uncommo	on)	

 Does the presence of other consonants in the quadriliteral reduce the strength of the OCP?

The Role of Root Length

 But because patterns like /bkts/ is far rarer than /tsbk/ or /btsk/ . . .

- However, there is no explanation for bi- and triliterals.
- Other complications lead to the conclusion of no distraction effect

(67) Cooccurrences of adjacent coronal obstruents ('quadriliteral' = all pairings: I-II, II-III, III-IV)

	<u>O</u>	_ <u>E</u>	O/E
biliteral	9	30	0.30
triliteral	44	168	0.26
quadriliteral	12	43	0.28

(69) Cooccurrences of adjacent coronal obstruents ('quadriliteral' = pairings I-II, II-III, but not III-IV)

	<u>O</u>	_ <u>E</u>	<u>O/E</u>
biliteral	9	30	0.30
triliteral	44	168	0.26
quadriliteral (nonfinal)	8	16	0.49

References

Buckley, Eugene. "Tigrinya root consonants and the OCP." *University of Pennsylvania Working Papers in Linguistics* 4.3 (1997): 3.